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Abstract

A 3D drawing methodology based on voxel-graphics was applied to the design of multi-component engineering systems, such as
fuel-cells. Using this methodology and Java-technology a graphics user interface (GUI) for a fuel-cell simulator program was developed
and used in simulations of large fuel-cell stacks. The GUI is capable to setup, run and monitor simulations remotely from a web-browser.
The geometric design module was implemented using 3D voxel sculpting methodology and data visualization, which is prototyped after
2D pixel graphics systems. The developed approach was primarily aimed at the design of complex multi-component engineering systems.
However, the flexibility of voxel-based geometry representation enables one to use this technique for both 3D geometric design and
visualization of unstructured volume data. Examples of both applications are presented, with the focus on fuel-cell stack simulations.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Distributed memory computer platforms, such as Beowulf
clusters are increasingly used for complex scientific simu-
lations of physical processes and engineering systems. Fuel
cells offer a way of using the capabilities of distributed
processing for efficient simulation of single fuel cells and
fuel-cell stacks. The modularity of fuel-cell stacks can be
exploited on computer clusters by running the simulation of
each fuel cell on a separate processor. In earlier work the
authors reported on the results of simulations of fuel-cell
stacks using continuum solvers and distributed simulation
techniques[1]. In this study, we present further develop-
ments of these techniques and focus on the issues of effi-
cient simulation control on remote clusters and modeling of
a single fuel cell as a multi-component system.

Until recently it was common to consider two basic ge-
ometries for fuel-cells: tubular and planar. Currently we
witness a proliferation of various designs aimed at increased
efficiency and power density. But even in the domain of
simple planar designs there are multitudes of configura-
tions of different components, such as anode, cathode,
electrolyte, air/fuel channels, interconnect, separator plates,
seals, current collectors, etc. Each component is typically
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represented by its own physical model. Many geometrical
designs are employed, resulting in co-flow, counter-flow
and cross-flow configurations[2]. Consequently, there
are two issues that arise in the design of these complex
multi-component, multi-physics systems: geometric design
and physical modeling. This article gives a brief outline of
the basic principles of general physical modeling used in
our fuel-cell simulations, but is primarily concerned with
geometric design of a single fuel cell. In particular, for
typical fuel cells configurations we found that the design
can be simplified by adopting a relatively straightforward
method of voxel sculpting[3–5].

Another aspect of simulating fuel-cell stacks concerns
simulation control on a remote cluster. The simulation solver
has to be specifically implemented for execution on a dis-
tributed memory system, using domain decomposition tech-
niques and message-passing interfaces (MPI, PVM). After
such solver has been implemented, to perform a simulation
one has to go through the stages of setup, execution, data
processing and visualization. All the stages face challenges
associated with the distributed nature of computations, espe-
cially when geometrically complex 3D systems are involved.
The task becomes extra difficult when the cluster has to be
accessed through the Internet from a remote workstation. In
this case, the user of the cluster would greatly benefit from
an accessibility to a graphical user interface (GUI), which
could provide for remote control of the simulation. In this
study we developed such a GUI, and used it in simulations
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of fuel-cell stacks on Beowulf clusters. The GUI performed
functions of (1) simulation setup, including complex 3D ge-
ometric design, (2) monitoring and runtime control of the
simulation, and (3) distributed data sampling and visualiza-
tion.

2. Method

2.1. Client–server model

In order to effectively monitor and control the execution
of a parallel application running on a remote cluster we im-
plement a client–server scheme (Fig. 1). In this approach
there is a single client running on a local workstation and
server process running on a remote cluster. The client pro-
cess enables the user to setup and remotely control the sim-
ulation, as well as retrieve and visualize data samples.

The server process controls the execution of a parallel
solver running on the cluster. The server process is initiated
as a part of the remote parallel application, and its purpose
is to respond to client’s requests. The are different channels
by which the control information can be passed between the
client and the server. In the simplest version the information
can be exchanged through configuration files. Files contain-
ing user requests are created by the client and periodically
read by the server, and server control information is writ-
ten into files read by the client. In a more dynamic scheme
the communications can be accomplished via MPI interface.
The server is implemented as part of the solver, which is
executed on each node the multi-processor simulation.

2.2. Modeling framework

The server running on the cluster is implemented as a set
of functions that can be linked with a variety of continuum or
discrete solvers, thus enabling one to control the simulation
performed by the solver from a remote client. Client and
server exchange information on parameters, variables and

Fig. 1. Simulation setup with a remote GUI control based on a
client–server model.

domains, which represent generic data types used by most
continuum and discrete dynamics solvers.

Each parameter stores a single value attributed to the given
model or to the simulation as a whole. Examples of param-
eters are total current through the system, ambient temper-
ature, number of processors, data sampling interval, etc.

Variables are represented by a set of multi-dimensional
values (scalars, vectors, etc.) with each element of the set
attributed to one element of the domain. For example, dis-
tributions of temperature, current, chemical species, etc.

Domain is a connected region of space assigned to a
specific physical model. For the purpose of numerical in-
tegration each domain is discretized by decomposing it
into smaller and geometrically simple regions (elements),
where physical laws are considered to be homogeneous and
isotropic. The group of connected elements represents a
grid, which can be of a structured type (global connectiv-
ity information) or unstructured type (local connectivity),
which is also calledmesh. Thus, a domain consists of a
mesh, a set of variables and the solution procedure. The
introduction of the domain data class provides the basis for
muti-physics simulations, where different physical models
can be assigned to the different regions of space.

2.3. User interface

The purpose of the local client process is to initiate the
following actions through the user interface:

(1) problem setup on a local workstation,
(2) transfer of the data and source-code files to the remote

cluster,
(3) building of the application executables and input files

on the cluster,
(4) submitting the remote application for execution,
(5) monitoring of the remote run,
(6) sampling of data from cluster nodes,
(7) terminating the run,
(8) collecting the data,
(9) visualizing.

The most difficult among these tasks are related to geo-
metric design, data retrieval and visualization. In particular,
the following aspects of this work received the most of
the development effort: (1) designing 3D drawing tools –
3D sculpting, (2) implementing 3D surface and volume
rendering, (3) compression of voxel data, and (4) creating
grid-independent representation of geometry.

2.3.1. Geometric design
An important issue in geometric design is defining com-

plex 3D shapes. In most engineering CAD applications 3D
drawing is realized by using combinations of pre-defined
shapes: spheres, cones, surfaces of evolution, combined with
planar drawing and extrusion operations. These 3D model-
ing techniques still lack the flexibility of general pixel graph-
ics used in conventional 2D drawing programs (PaintBrush,
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Fig. 2. Voxel sculpting of 3D shapes. (a) 2D drawing area and (b) 3D representation.

XPaint, etc.). Pixel graphics offer the possibility to easily
create and alter complex geometrical shapes. The extension
of a pixel to 3D is also known as volume pixel (voxel)
[6]. Using voxel graphics creates additional advantages over
surface representations (vector graphics), since they avoid
completely topological complexities of surface transforma-
tions. This is because surfaces do not exist as objects in
voxel representation. Another advantage of voxel graphics
is their versatility and power combined with a great algo-
rithmic simplicity.

The price to pay for this flexibility is seemingly ineffi-
cient usage of space, which has to be uniformly filled by
the voxels. However, the very uniformity of voxel distribu-
tion opens the possibility to use efficient compression al-
gorithms, so that the overall storage requirement for a sur-
face or a compressed voxel representation becomes about
the same. Unfortunately, efficient compression schemes can
only be applied to voxel graphics for storage and commu-
nication purposes. Real time graphics manipulation by the
drawing algorithm would require at least partially uncom-
pressed image. This is the reason why voxel graphics were
not seriously approached until recently. Today the situation
may be changing. A complex multi-color scene described by
a 10003-pixel cube, can already easily fit into a workstation
with a 1 GB of RAM2. This opens an opportunity to revisit
simple and robust pixel graphics techniques for engineer-
ing design and scientific applications that involve dynamic
3D geometries and complex scene transformations. In ap-
plications to fuel cells design the approach offers a simple
technique for geometric design of these multi-component
systems. We found it particularly useful in simulations of
fuel-cell stacks on distributed memory computer platforms,
where remote setup and control of the simulation can speed
up the analysis.

2 We consider a 256 color scheme where one pixel can be represented
by one byte in a computer memory

In this work, we pursued the approach to geometric
design based on3D sculpting and voxel-graphics [5,4,3].
The task of extending 2D pixel graphics to 3D can be ac-
complished on two levels of generality: (1) extending the
drawing plane to 3D, and (2) introducing 3D paint-tool
controls.

A simple extension of planar drawing plane to 3D is
relatively straightforward. It requires the introduction of the
third dimension into the pixel-array and identifying the po-
sition and orientation of the drawing plane. In a simplified
case the drawing plane can have three different orientations
with respect to Cartesian coordinates. The image drawn in
the plane can then beextruded into the third dimension,
analogously to the operation done in conventional CAD
applications (Fig. 2). This approach is adequate for the pur-
poses of designing many engineering systems, such as pla-
nar fuel-cells. A more general approach tovoxel-sculpting
[5,4] is being currently pursued with the introduction of 3D
sculpting tools.

Introducing 3D drawing tool controls can be as simple as
changing the position and orientation of the drawing plane.
However, to alleviate the frustration of dealing with hun-
dreds of drawing planes in case of high-resolution 3D scenes,
more advanced 3D drawing tools and motion controls should
be introduced. In essence, each 2D drawing tool can have
its 3D counterpart, with extra spatial dimension added to the
tool. For example, the drawing pen can be represented by a
color-filled ball of a certain radius. The user selects the color
and the radius of the ball. Positioning of the ball in space
can be done by selecting the direction vector of ball’s mo-
tion and then advancing it along this direction. Since there
are three parameters required for this operation, it can be
done, using only mouse controls: two mouse-position coor-
dinates to set the direction vector, and mouse-wheel motion
to set the position along that direction. More sophisticated
3D navigation tools can be developed using prototype con-
trols of a flight-simulator application.
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2.3.2. Visualization
Effective 3D visualization of the drawn scene is the key

supplement to successful drawing capabilities. An almost
trivial feature in 2D graphics, visualization and surface ren-
dering become a major effort in 3D. For most purposes of
engineering design a simple wireframe rendering mode is
usually enough. This can be accomplished in a number of
ways, and in a manner consistent with the resolution of the
image, i.e. the ratio of the image size to the grid-cell size.
Three wireframe rendering models were implemented. One
of them is based on a relatively versatile and fast method of
constructing cutting-plane contours. The number of planes,
their orientations and separations can be set by the user,
thus, adjusting the rendering to high versus low resolu-
tion scenes. Another wireframe model is based on a direct
rendering of surface edges of every boundary voxel as a
set of segments. This representation is most memory con-
suming and preserves all the information contained in the
voxel format. It can be used for low-resolution scenes with
a small number of voxels. The third wireframe representa-
tion is grid-independent type, where the surface is stored
as a triangulated mesh, with mesh properties independent
of the three axes directions of the original voxel-grid. The
method of constructing such surface is based on boundary
surface reconstruction algorithm, which filters out the main
wavenumber associated with the underlying discrete grid,
and which was specifically developed in the course of this
study.

The advantages of wireframe rendering are that it is rela-
tively simple to handle algorithmically and sufficiently fast
to work well even without accelerated graphics. It also pro-
vides one with the depth perspective. Nevertheless, for an
accomplished drawing and design package a more advanced
surface and texture rendering is needed. For this purpose
Java3D graphics library was used, which works best with
hardware accelerated graphics. In this combination both
wireframe and surface rendering modes are possible.

2.3.3. Data compression
Even though scenes of relatively high resolution can be

created on a modern workstation, when used remotely, pixel
graphics can still present a problem because of the necessity
to transfer bulky voxel representations over relatively slow
networks. Fortunately, most of the scenes of practical inter-
est can be effectively compressed to many times less than
the size of raw voxel representation. This is due to the fact
that the amount of information contained in a scene is inde-
pendent of whether pixel or vector graphics representation
is used to describe it. This information is rather related to
the positions and shapes of the few objects populating the
scene. From this perspective, the efficient compression algo-
rithms applied to a voxel-graphics representation will elim-
inate the inherent redundancy of voxel format and convert it
into a high-entropy format which will be comparable in size
to any other compact format with the degree of compression
close to theoretical maximum.

2.3.4. Simulation control
After the physical model has been setup the client can

initiate the transfer of necessary files to the cluster and
schedule the simulation for execution. Once started, the
simulation can be monitored by periodic data sampling
from the cluster nodes and displaying them in numerical
or graphical format. The data sampling strategy is set from
the considerations of bandwidth and problem size. One
dimensional (vector) data can be displayed as 2D plots.

Simulation parameters represent the input data of the
problem, which are not affected by the simulation, such as
initial/boundary conditions, number of processors, the du-
ration of the run, etc. Almost all the simulation parameters
can be changed dynamically during program execution. This
enables one to change simulation conditions in real-time.

Table 1displays the list of some parameters used to con-
trol the sampling sizes and frequencies as well as several
physical parameters of a fuel-cell model. Some fields in the
parameter table can be set by the user, and others are fixed.
Each parameter is identified by several properties.Scope de-
termines if the parameter represents a variable, defined on
the nodes of computational mesh, such as temperature or
concentration, or a single value valid for all the simulation,
such as total current or the ambient temperature. Parame-
ters which belong to parameter-scope are not modified by
the solver, and can be changed by the user during the simu-
lation. Parameters of the variable-scope are subdivided into
control variables and variables. Variables are modified by
the solver during the run, and thus can only be set as initial
parameters of the simulation, whereas the control variables
can be set by the user during the run. The type of the pa-
rameter identifies its numerical representation as an integer
or a real number. The parameterdimension identifies it as a
scalar (0), a vector (1), or a generaln-rank tensor (n). The
value andmonitor fields are set by the user, where the latter

Table 1
Simulation control parameters for a fuel-cell application

Name Scope Type Dimension Value Monitor

NP Parameter Int 0 10 False
MonitorPlane Parameter Int 0 10 False
TotCurrent Parameter Real 0 600.0 False
TemperatureAmb Parameter Real 0 1250.0 False
StopTime Parameter Real 0 9000.0 False
PrintCntStep Parameter Int 0 1E9 False
PrintTimeStep Parameter Real 0 100.0 False
CathodeInletVel Parameter Real 0 1.214 False
AnodeInletVel Parameter Real 0 0.407 False
CathodeInletT Parameter Real 0 1073.0 False
AnodeInletT Parameter Real 0 1073.0 False
TimeStep Controlvar Real 0 0.0 False
TemperaturePEN Variable Real 0 1200.0 True
TemperatureAir Variable Real 0 1200.0 True
TemperatureFuel Variable Real 0 1200.0 True
TemperatureSep Variable Real 0 1200.0 True
TemperatureTop Variable Real 0 1200.0 True
CurrentDensity Variable Real 0 0.0 True
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Fig. 3. Geometric design of fuel cells: surface representations. (a) Wireframe representation and (b) surface representation.

indicates if the parameter’s values will be monitored during
the run.

It should be noted that the flexibility of setting up the
control parameters enables one not only to start/stop the
execution but also to change model parameters during the
simulation, i.e. ambient temperature, total current, etc.

In addition to providing visualization capabilities, remote
data monitoring, and control of the simulation, the interface

Fig. 4. GUI control and monitoring windows: control panel (left), 3D view panel (middle bottom), 2D drawing pane (right top), 3D wireframe view
(right bottom), main panel (in the back).

essentially hides from the user the intricacies of the under-
lying operating system running on the cluster. Some of the
interface menu functions can in fact be developer-defined.
Thus, it is possible for the code developer to assign different
Unix-type commands for the user to execute on the cluster
without requiring proficiency with Unix. These commands
can be changed or implemented without the need to recom-
pile the interface executable itself.
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Fig. 5. Remote monitoring of transient temperatures.

3. Simulation of fuel-cell stacks

The methodology of integrated simulation setup and con-
trol based on voxel-graphics and Java-technology was ap-
plied to simulations of fuel-cell stacks on Beowulf clusters.
In this case the geometric design of a fuel cell is done on
a local workstation by means of voxel-based graphics tools
implemented in Java. The geometric information and the
setup parameters are then transferred to the cluster. After
the simulation is started it can be monitored from on the
workstation by periodically retrieving data samples and dis-
playing them in graphics format.

Fig. 2 shows the example of voxel-based sculpting of ar-
bitrary 3D shapes. Application of this voxel-based sculpting
to a cross-flow fuel-cell geometry is shown inFig. 3. The
geometry can be displayed either in wireframe representa-
tion or using surface rendering.

A screen-shot of the GUI is shown inFig. 4 where the
main components, such as the main panel, the control panel,
the 3D view panel, the 2D drawing pane, and the 3D wire-
frame view are displayed.Fig. 5 shows the screenshot of
the monitoring window where the transient temperature re-
trieved from the remote cluster nodes are displayed in a
graphical format. Considering small time-steps that are re-
quired for electrical and chemical sub-models of the solver,
such simulation may take large computer resources in terms
of time and memory. Thus, it is important to realize a flex-
ible system of simulation control which enables one to ad-

Fig. 6. Distributions of physical parameters within the stack. (a) Temper-
ature, (b) voltage.
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just parameters during the run. Thus, inFig. 5 thermal re-
sponses to changes in total current are observed. It should
also be noted that large fuel-cell stacks may exhibit unex-
pected temperature and voltage variations, depending on the
performance of separate cells. The developed system can be
effectively used to simulate various stack operation scenar-
ios, where the failure of one of several cells may affect the
overall stack performance.

This system of remote setup and monitoring was success-
fully applied to the simulation of large stacks of up to 40
solid oxide fuel cells[1,7,8]. Fig. 6 shows sample distri-
butions of temperature and voltage within a 20-cell stack.
This simulation was done under uniform stack conditions
with respect to fuel and oxidizer supply. However, non-
uniform variations of temperature and voltage can clearly
be observed for the bottom and top group of cells in the
stack.

4. Conclusions

An approach to 3D graphics based on voxel-representation
was successfully applied to the setup of typical fuel-cell
geometries. The approach offers considerable simplicity and
flexibility. It also enables one to combine geometric design
and data visualization in a single framework.

Making use of Java-technology and a client–server model
enables one to design web-based user interfaces for remote
control and monitoring of scientific and engineering simu-
lations on Beowulf clusters.

Because of inherent modularity of fuel-cell stacks these
systems can be effectively simulated on distributed memory
platforms, such as workstation clusters. These simulations
can benefit from remote interfaces with graphical capa-
bilities, such as the one developed in this study. An extra
advantage of the interface is the flexible control of the
simulation, which provides the possibility of playing out
different operation scenarios.

Based on the results of this study we conclude that
voxel-graphics is a promising technique for applications in
grid and cluster computing, related to 3D geometric design
and data visualization.
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